P0D ν_e thoughts and questions

Philip Rodrigues

University of Rochester

March 10, 2011
Introduction

- Remaining backgrounds
- π^0 rejection
- What will we quote and how?
- Systematics thoughts
Are there any rejectable muons left?

After all cuts:

<table>
<thead>
<tr>
<th></th>
<th>Sig</th>
<th>Total BG</th>
<th>Mu</th>
<th>Pi0</th>
<th>MPi</th>
<th>PiC</th>
<th>Prot</th>
<th>Oth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64</td>
<td>171</td>
<td>19</td>
<td>70</td>
<td>42</td>
<td>18</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>

Remaining muons leave little energy in det, have π^{\pm}

Conclusion: No longer need to think about rejecting muons
Multi-π events

- Remaining multi-π mostly have π^0
- Conclusion: Any purity improvements must reject π^0
Is the background irreducible? MC truth study idea:
- Look at how much PH left by second γ
- Look at angle between γs (vs shower angle?)

Suggestion from Ian: use unassociated PH in event

What is the stopping condition?
- Related: if we can’t reject more background, do we try to improve efficiency?
What will we quote and how?

- What quantity are we quoting as the final result of this analysis?
 - ν_e flux over ν_{μ} flux, N_{ν_e} data/MC ratio, Cross section on water,
- And how will we calculate it?
 - eg, fit MC with scale factor, “pen and paper” with efficiency/purity,
- Affects what systematics are relevant
 - eg, data/MC ratio used to predict N_{SK} needs no beam syst, while cross section does
Related to FV: We are planning to look at magnet MC sample

One way to quantify cut uncertainty:
- Move cut some “1σ” distance in data and MC. Compare $\Delta N_{\text{selected}}$
- Harder for cuts on discrete variables

More complex way to look at effect of “rest of event” (ie, not lepton):
- Take good CCμ interactions. Replace μ with e. Rereconstruct
- Now have a fake sample of ν_e events in data and MC
- (Used in MINOS under the names MRCC and MRE)

Who to co-ordinate with in π^0 group?