P0D ν_e analysis systematics

Philip Rodrigues

University of Rochester

May 11, 2011
Introduction

- Energy scale
- Selection efficiency/background rejection
- Background cross-sections
Energy scale

- **Simulation:**
 - Vary amount of high Z material in P0D MC (TODO)

- **Calibration:**
 - Per channel variation not modelled
Simulating channel-to-channel variations

- Multiply each channel’s response by $X \sim N(0, \sigma)$
- Find σ to make MC width match data in stopping and μ
- Apply same smearing to simulated ν interactions
- (Not done quite right: smear charges of hits after readout, instead of deposited energy in bar)
Effect on reco e energy

- Truly fiducial CC ν_e events with one EM-like (median width > 1), reco fiducial
- Fit width is 2.3% (mean -0.18%)
- TODO: Effect on selection efficiency (prob. negligible)
Selection efficiency/background rejection

- MC with varied high Z material can address selection eff.
- Background rejection systematic from sand muons:
 - Compare fraction of stopping sand μ selected in data and (particle gun) MC
 1. Select sand μ which stop in P0D
 2. Require $N_{\text{track}} = 1$ and $N_{\text{shower}} = 0$ to veto non-μ activity
 3. Count fraction passing Median width ≥ 1 cut in data and (my own particle gun) MC
Median width

- Excess in data at nonzero median width values
- Translates to selected fractions:
 - data=1.4%, mc=1.2%, data/mc=1.18
- For want of something better:
 - correct μ BG in analysis by 1.18
 - take 100% of correction as systematic (i.e., 1.18 ± 0.18)
- Not ideal, but μ BG small in analysis
Digression: Understanding hit widths

- Distribution of widths of all nodes agrees well, except:
 - Data excess around 5
 - Data population between 0 and 1, not present in MC

- Hypothesis:
 1. Higher noise rate in data
 2. Low pe noise hit adjacent to track included in track
 3. Produces small but nonzero width

Production 4, Runs 1 and 2. Particle gun MC
Digression: Noise

- Look at hits in empty spills
- Noise rate off in data
- Charge threshold not sharp in data
Digression: Increase noise

- Generated stopping sand μ MC with noise rate $\times 9$
- Change in hit widths is in right place for data excess
- Also investigated charge cut, triplet nodes (backup slides)
Background cross section

Error on NC $1\pi^0 / \text{CCQE Ratio}$

- Use NIWG number for NCπ^0
Conclusions

- Progress on systematics for ν_e analysis
- Understand main e/μ discrimination variable
- Ideas welcome, especially for selection efficiency systematic
Backup slides
Triplet nodes and noise

From stopping muons

- Right: **Nominal** Noise \times 9
- Effect of increased noise goes in right direction
Hit widths after charge cut

Cut at 6pe

Cut at 10pe

Agreement much improved after cut
Node n hits after charge cut

- Charge cuts massively reduce doublet efficiency
- Don’t improve data/MC so much