The Pizero Detector at T2K

Norm Buchanan
Colorado State University
(On behalf of the T2K P0D Group)
June 9, 2010

Technology and Instrumentation in Particle Physics
TIPP 2011
$\frac{L}{E_\nu} = 492 \text{ km/GeV}$
• Dominant physics background to ν_e signal is misidentified NC π^0
 • one gamma is missed and π^0 looks like electron from CCQE interaction
 • determine NC π^0 rate in near detector where rate is high and extrapolate to far detector
• Pi Zero Detector (P0D) in near detector optimized for π^0 rate measurement

\[\nu_e + N \rightarrow \nu_e + N + \pi^0 \]

\[\nu_e + n \rightarrow e + p \]
Off–Axis Near Detector

Magnet
UA1 magnet
Nominal B=0.2T

Side Muon Range Detector
Cosmic trigger and p_μ measurement

PiZero Detector
Optimized for π^0 rate measurement
Measure beam v_e

TPCs
Detection of charged particles
Momentum resolution < 10% (@ 1 GeV/c)

Fine Grained Detectors
Target mass for tracker
Capable of detecting recoil protons

ECALs
Capture $\gamma/e/\mu$ escaping P0D and tracker
Scintillating layers and Pb absorber

See F. Retiere’s talk for details of near detector Friday
The Pi Zero Detector

- Modular design
 - 40 active layers with Pb (ECAL) and Brass (WT) absorbers
 - 27-layer ECAL modules and 2 13-layer WT modules
 - Water target has 25 water target layers interleaved between active/absorber layers
 - Dimensions: W=2103 mm H=2239 mm L=2400 mm
 - Mass: Water in – 16.1 tons Water out – 13.3 tons
 - Components of P0D constructed at several institutions

Central ECAL Central WT Upstream WT Upstream ECAL
Detection Layers (P0Dules)

- Each P0Dule contains an X and a Y plane of triangular scintillating bars
 - 134 bars make up an X plane and 124 bars make up a Y plane
 - Bars extruded at FNAL extrusion facility: consist of 1% PPO and 0.03% POPOP in a styrene base (with a reflective TiO$_2$ coating)
- An optical fiber installed in the center of each bar
 - Multi-clad WLS fiber (doped with Y11 at 175 ppm)
 - Fibers mirrored on one end and read out from the opposite end by Hamamatsu multi-pixel photon counters (MPPCs)
- Water bladders reside between WT P0Dules
 - Each water layer contains 2 bladders that can be filled and drained on demand using a remote controlled pump array
 - Level and depth sensors are used to provide monitoring of water bladders during fill/drain procedures and normal operation

10,400 total active channels

Schematic of 2 bladders in a water layer (x-y view)
Detector Readout

• **Multiple-pixel photon counters (MPPCs)**
 - Each fiber is coupled to a 667 pixel Hamamatsu MPPC
 - # of pixels illuminated proportional to # photons

• **Readout electronics**
 - 32-channel Trip-t ASICs read out MPPCs (4 ASICs per trip-t front-end board (TFB))
 - Low gain and high (10x) gain channels cover dynamic range of 1 – 500 p.e. (~10 ADC/p.e. resolution for high gain channel)
 - Trip-t’s integrate charge over 23 integration cycles sync’d to beam timing
 - Timing, control, and trigger signals are handled by separate boards servicing large # of channels

• **Data Acquisition**
 - Global ND280 DAQ utilizes MIDAS framework running on a farm of Linux nodes
 - Global slow controls system uses same MIDAS framework

2 TFBs mounted on ECAL super-P0Dule
Light Injection and Calibration

• **UV LED-driven light injection system**
 • Designed to monitor gross channel issues and temporal changes
 • Each X and Y layer contains 2 400 nm LEDs (back to back)
 • LEDs aim along channel at opposite end to MPPCs
 • Covers dynamic range of 1 – 100s of photons
 • Amplitude and pulse length adjustable via current pulse variation

• **Calibration**
 • Dark noise spectrum used to determine pedestal and photo-electron unit in terms of ADC values
 • An internal TFB charge injection circuit is used to determine any non-linearity in the electronics
 • MIP light yield was determined for tracks passing through the individual super-P0Dules and then for the entire P0D once it was installed
POD Performance

Possible MIP tracks through layer

Percentage of 1 and 2 hit MIP tracks for each X and Y POD layer

Calibrated and path-length corrected MIP charge deposits in PEU

Light injection output over 3 week period (short term variations come from MPPC gain)
P0D Performance

- ν interaction originating in P0D ECAL
- ν interaction originating in P0D water target

"Iso-contours" of θ_{OA} (approximate)

Outer corner of P0D about 20% more off-axis than inner corner
Earthquake

On March 11th the largest (9.0 magnitude) earthquake in recorded history to strike Japan hit off the east coast of Honshu near Sendai.

- 25,000 people killed or missing
- >100,000 homeless
- Many towns and villages up the eastern coast destroyed
- Fukushima nuclear power plant severely damaged

J-PARC suffered moderate damage but was spared the wrath of the resulting tsunami

- Some road damage around site
- Near detector, including magnet, seem to be in excellent shape after the earthquake
- Visual inspection of P0D made with a remote camera on the end of a long flexible neck - OK
- Cooling system checked out and again operational
- No obvious damage to P0D electronics – no power to ground shorts observed
- Planning on full P0D power up in coming weeks
Summary

- PiZero Detector optimized to measure π^0 rate in ND280
- Installed in 2009 – taking data since Jan 2010
- Performance has been excellent
- No obvious signs of damage from March 11 earthquake
- Full power-up will happen soon

THANK YOU!
Supplementary Material
T2K Goals and Sensitivity

νμ disappearance

\[P (\nu_\mu \to \nu_\mu) \approx 1 - \sin^2(2\theta_{23}) \sin^2(1.27\Delta m_{23}^2 L/E) \]

How close to 45° is \(\theta_{23} \)? (measure to \~1\%)

Measure \(\Delta m_{23}^2 \) to higher precision (< 1\times10^{-4})

νe appearance

\[P (\nu_\mu \to \nu_e) \approx \sin^2(\theta_{23}) \sin^2(2\theta_{13}) \sin^2(1.27\Delta m_{13}^2 L/E) \]

Improve upper limit on \(\theta_{13} \) by > order of magnitude

Determine if \(\theta_{13} \) is large enough to measure \(\delta_{CP} \)

Sensitivity

Sensitivity down to 0.006 (\(\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{eV}^2 \))

90% C.L.
P0D Installation

Lowering ECAL into basket
P0D Installation

- Light injection system hardware installed
- Bracing on downstream ECAL
- Utilities Curtain
- P0D readout and water system electronics
- Power distribution
- Mounting cover panels