CHARGE–FLOW POD RECONSTRUCTION APPROACH (TRACK ID - FIRST LOOK)

Norm Buchanan, Eric Conrad, Fahmida Khanam
Motivation

• Want to exercise charge-flow reconstruction
 • Tracks are a bit easier than showers
 • Can emulate Raj/Erez’s analysis for comparison

• Issues
 • Can’t easily match global interface in ND280 framework
 • Our recon can’t simply plug into framework in place of P0Drecon
 • Neither of these issues are obstacles that can’t be overcome

• Potential Payoffs and Advantages
 • More information available for analyses
 • Lower level information is needed for MVA PID
 • Possibly reduce the falloff in downstream track ID efficiency
 • Ultimately to be used for NC π^0 and CC ν_e P0D measurements
Full Approach

• Build fundamental cluster (qCluster) set for each event
 • group together adjacent hits
• Build “super” clusters for each event
 • involves combination of qClusters (and splitting if necessary)
 • tracks: group clusters within cylinder aligned with US or DS of qCluster
 • showers: group clusters within cone aligned with DS of qCluster
• Parameterize superClusters for each event
 • parameterized superClusters feed PID

500 MeV π^0 (particle gun) 500 MeV μ (particle gun)

6.0 p.e. threshold cut
So how can we do a quick and dirty track ID?

A track must have:

- mean $Q_{\text{layer}} < 60$ p.e. in each projection
- mean $|\Delta Q_{\text{layer}}| < 20$ p.e. in each projection
- mean $N_{\text{Hits}}_{\text{layer}} \leq 2$ hits in each projection

VERY crude but gives benchmark – improvements underway
500 MeV muon and electron

qClusters/event

Blue = muon
Red = electron

hits/qCluster

hits/layer
100 MeV muon and electron

qClusters/event

Blue = muon
Red = electron

hits/qCluster

hits/layer
500 MeV muon and electron

qCluster length

Blue = μ Red = e⁻
Blue = μ
Red = e^-

XZ

YZ

qCluster length
Summary

• Have foundations for charge-flow reconstruction in place

• Current focus is on track ID (muons)

• Studying many variables as function of particle type, particle energy, and particle angle

• Planning to have much more mature version of track ID by collaboration meeting

• Perhaps PID by end of current C.Y.

• Look for regular updates at P0D software meeting